# Logistic (RLOGIST) Example \#3 

## SUDAAN Statements and Results Illustrated

- PREDMARG (predicted marginal proportion)
- CONDMARG (conditional marginal proportion)
- PRED_EFF pairwise comparison
- COND_EFF pairwise comparison
- SUBPOPX


## Input Data Set(s): SAMADULTED.SAS7bdat

## Example

Using 2006 NHIS data, determine for white adults the effects of age and sex on the occurrence of not being able to afford prescription medications in the past year, controlling for region of country, education, and marital status.

This example highlights the PREDMARG and CONDMARG statements and the PRED_EFF and COND_EFF statements in obtaining model-adjusted risks, risk ratios, and risk differences in the context of a main-effects logistic model. For the sake of generality, the terms marginal, prevalence, and risk will be used interchangeably.

This example also highlights the estimation of confidence intervals for predictive margins.

## Solution

NHIS is an annual multipurpose health sample survey conducted by the National Center for Health Statistics (NCHS). For more information about the data used in this example, see Section 12.7. The 2006 NHIS collected data on approximately 29,200 households; 29,900 families; 75,700 persons; 24,275 sample adults; and 9,800 sample children.
In the 2006 study, each sample adult was asked (variable AHCAFYR1):
"During the PAST 12 MONTHS, was there any time when you needed prescription medicine but didn't get it because you couldn't afford it?"
Possible answer codes are yes, no, don't know, refused, and not ascertained. Only $0.96 \%$ of sample adults were coded as something other than yes or no. The constructed variable CANTAFMEDS is created from AHCAFYR1 and is coded as $1=y e s$ (could not afford at least once in the past 12 months) or $0=n o$ (event did not happen). All other responses are coded to missing.
This example first uses the DESCRIPT procedure to estimate population parameters for each categorical covariate separately and the RLOGIST procedure (SAS-Callable SUDAAN) to model the probability that the dependent variable CANTAFMEDS is equal to 1 as a function of the set of independent variables. In RLOGIST, the response variable must be coded 1 or 0 .
For variance estimation purposes, the complex sampling plan is described as 300 pseudo-strata with two pseudo-PSUs per stratum. Sampling at the first PSU stage is assumed to be with replacement. Each unit of analysis (sample adult, sample child, person, etc.) is clustered within his/her PSU, and lower level sampling units are not identified.

In this example (see Exhibit 1), we use the sample adult (age 18 and older) data file with 24,275 observations. The stratification and primary sampling unit variables are named STRAT_P and PSU_P, respectively, and appear on the NEST statement. The weight variable for the sample adult file is WTFA_SA and appears on the WEIGHT statement. The PROC statements specify DESIGN=WR (i.e., unequal probability sampling of PSUs with replacement), and Taylor Series linearization is used for variance estimation. The subpopulation is defined as white (MRACRPI2=1) and at least 25 years old (AGE_P >= 25).

The first DESCRIPT procedure (middle section of Exhibit 1) investigates the univariate relationship between each of the five independent variables and the dependent variable CANTAFMEDS. The mean of the variable CANTAFMEDS is requested on the VAR statement below. The CATLEVEL statement specifies that we want to estimate totals and percentages for CANTAFMEDS=1. Here, the mean is the estimated percentage of adults incurring the event, and the total is the estimated number of adults incurring the event. The TABLES statement requests the estimated percentage by each of five independent variables:

- sex (SEX: 1=Male, 2=Female);
- categorical age at three levels (AGE25_3: $1=25-44,2=45-64,3=65+$ );
- categorical education at three levels (EDUC_3: 1=HS or Less, 2=Some College, 3=College Grad);
- region of the U.S. at four levels (REGION: $1=$ NE, $2=$ Midwest, $3=$ South, $4=$ West); and
- marital status at three levels (MARRY_3: 1=Married, 2=Widowed, 3=Unmarried).

These five variables are on the CLASS statement. The SUBPOPX statement restricts the DESCRIPT analysis to the same subjects who are included in the subsequent RLOGIST analysis. The PRINT statement (optional) is used to request specific statistics, change default labels for those statistics, and change the default formats for those statistics. Without the PRINT statement, a set of default statistics are produced, with default formats and labels. The RFORMAT statements associate the SAS formats with the variables used in the DESCRIPT procedure. The RLABEL statement defines variable labels for use in the current procedure only. Without the RLABEL statement, SAS variable labels would be produced if already defined.

The second DESCRIPT procedure (bottom half of Exhibit 1) computes differences (DIFFVAR statement) in the percentage of people not able to afford prescription medication among the three age groups. All age-related estimates produced by DESCRIPT are unadjusted for other covariates.

This example was run in SAS-Callable SUDAAN, and the SAS program and *.LST files are provided.

## Exhibit 1. SAS-Callable SUDAAN Code (PROC DESCRIPT)

```
libname in "c:\10winbetatest\AmJEpid";
options nocenter pagesize=70 linesize=95;
proc format;
    value educ 1="1=HS or Less"
        2="2=Some College"
        3="3=College+";
    value age 1="25-44"
        2="45-64"
        3="65+";
    value sex 1="1=Male"
        2="2=Female";
    value region 1="1=N.E."
                        2="2=Midwest"
                    3="3=South"
                    4="4=West";
    value marry 1="1=Married"
            2="2=Widowed"
            3="3=Unmarried";
    value yesno 1="Yes"
            0="No";
Data samadult; set in.samadulted;
    if 0 le educ1 le 14 then educ_3=1;
    else if educ1=15 then educ 3=\mathbf{2}
    else if 16 le educ1 le 21 then educ_3=3;
    else educ_3=.;
    if 25 le age_p le 44 then age25_3=1;
    else if 45 le age p le 64 then age25 3=2;
    else if age_p ge \overline{65}}\mathrm{ then age25_3=3;
    if r_maritl in (1,2,3) then marry_3=1;
    else if r maritl=4 then marry 3=2;
    else if r_maritl in (5,6,7,8) then marry_3=3;
    else marry_3=.;
    if ahcafyr1=1 then cantafmeds=1;
    else if ahcafyr1=2 then cantafmeds=0;
    else if ahcafyr1 in (7,8,9) then cantafmeds=.;
proc sort data=samadult; by strat_p psu_p;
PROC DESCRIPT DATA=samadult DESIGN=WR FILETYPE=SAS;
    NEST STRAT P PSU P;
    WEIGHT WTFA_SA;
    /* Subset to subjects used in logistic regression analysis:
        Age 25+, Race=White, No missing values on variables */
    SUBPOPX AGE_P >= 25 AND MRACRPI2=1 AND CANTAFMEDS in (0,1)
            AND EDUC_3 in (1,2,3) AND MARRY_3 in (1,2,3)
            / NAME="S
    CLASS SEX AGE25_3 EDUC_3 REGION MARRY_3;
    VAR CANTAFMEDS; /* codēd 1 or 0 */
    CATLEVEL 1; /* Calc percentage with CANTAFMEDS=1 */
    TABLES SEX AGE25_3 EDUC_3 REGION MARRY_3;
    SETENV labwidth=20;
    PRINT NSUM="Sample Size" WSUM="Weighted Size" TOTAL="Number Can't Afford"
            PERCENT="Pct Can't Afford" SEPERCENT="SE(Pct)" /
            NSUMFMT=F6.0 WSUMFMT=F9.0 TOTALFMT=F12.0 PERCENTFMT=F9.2
            SEPERCENTFMT=F10.2 STYLE=NCHS;
    RLABEL CANTAFMEDS="Can't Afford Meds Past 12m";
    RLABEL age25_3="Age Group";
    RFORMAT age2\overline{5}}3\mathrm{ age.;
    RFORMAT CANTAFMEDS yesno.;
    RFORMAT sex sex.;
```

```
RFORMAT educ_3 educ.;
RFORMAT region region.;
RFORMAT marry_3 marry.;
RTITLE "Effect of Demographics on Can't Afford Meds, Past 12 Months"
    "Whites Age 25+";
RFOOTNOTE "Data Source: NCHS National Health Interview Survey (2006)";
PROC DESCRIPT DATA=samadult DESIGN=WR FILETYPE=SAS nomarg;
    NEST STRAT_P PSU_P;
    WEIGHT WTFA_SA;
    SUBPOPX AGE P >= 25
        AND MRACRPI2=1
        AND CANTAFMEDS in (0,1)
        AND EDUC 3 in (1,2,3)
        AND MARR\overline{Y}}3\mathrm{ in (1, 2,3)
        / NAME="Sample Adults in Logistic Regression Analysis";
    CLASS AGE25 3;
    VAR CANTAFMEDS;
    CATLEVEL 1;
    TABLES _one_;
    DIFFVAR AGE25_3=(1 3) / NAME = "25-44 vs. 65+";
    DIFFVAR AGE25_3=(2 3) / NAME = "45-64 vs. 65+";
    DIFFVAR AGE25_3=(1 2) / NAME = "25-44 vs. 45-64";
    SETENV labwidth=24;
    PRINT NSUM="Sample Size" PERCENT="DiffPct"
        SEPERCENT="SE" T PCT="T:Diff=0" P PCT="P:Diff=0"/
        NSUMFMT=F6.0 PER\overline{CENTFMT=F8.2 SEPERCENTFMT=F10.2 T_PCTFMT=F8.2}
        P PCTFMT=F8.4 STYLE=NCHS;
    RLABEL CANTAFMEDS="Can't Afford Meds Past 12m";
    RLABEL age25 3="Age Group";
    RFORMAT age25_3 age.;
    RFORMAT CANTAFMEDS yesno.;
    RTITLE "Effect of Age on Can't Afford Meds, Past 12 Months"
        "Whites Age 25+";
    RFOOTNOTE "Data Source: NCHS National Health Interview Survey (2006)";
```


## Exhibit 2. First Page of SUDAAN Output (PROC DESCRIPT)

```
                                    S U D A A N
    Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute February }201
    Release 11.0.0
DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a
With Replacement (WR) Design
    Sample Weight: WTFA SA
    Stratification Variābles(s): STRAT_P
    Primary Sampling Unit: PSU_P
Number of observations read : 24275 Weighted count :220266693
Observations in subpopulation : 16042 Weighted count :154637709
Denominator degrees of freedom : 300
```

The number of subjects defined by the SUBPOPX statement is 16,042 (see Exhibit 2); they make inference to $154,637,709$ white adults in the population aged 25 and older. The denominator degrees of freedom is 300 (i.e., 600 PSUs minus 300 strata).

## Exhibit 3. CLASS Variable Frequencies (Sex)

```
Frequencies and Values for CLASS Variables
by: Sex.
Sex Frequency Value
Ordered
    Position:
    1 7179 1=Male
Ordered
    Position:
    2 8863 2=Female
--------------------------------------
```

Exhibit 4. CLASS Variable Frequencies (Age Group)

```
Frequencies and Values for CLASS Variables
by: AGE25_3.
-----------------------------------
AGE25_3 Frequency Value
Ordered
    Position:
    1 6453 25-44
Ordered
    Position:
    2 5982 45-64
Ordered
    Position:
    3 3607 65+
-------------------------------------
```


## Exhibit 5. CLASS Variable Frequencies (Education Level)

```
Frequencies and Values for CLASS Variables
by: EDUC_3.
-----------------------------------------------
---------------------------------------------------
Ordered
    Position:
    1 7535 1=HS or Less
Ordered
        Position:
    2 2713 2=Some College
Ordered
    Position:
    3 5794 3=College+
```

Exhibit 6. CLASS Variable Frequencies (Region)


## Exhibit 7. CLASS Variable Frequencies (Marital Status)

```
Frequencies and Values for CLASS Variables
by: MARRY 3.
```



```
MARRY 3 Frequency Value
---------------------------------------------
Ordered
    Position:
    1 8796 1=Married
Ordered
    Position:
    2 1723 2=Widowed
Ordered
    Position:
    3 5523 3=Unmarried
----------------------------------------
```


## Exhibit 8. Univariate Estimates for CANTAFMEDS (By SEX)

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Demographics on Can't Afford Meds, Past 12 Months
Whites Age 25+
by: Variable, Sex.
Variable Sample Weighted Number Can't Pct Can't
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sex & Size & Size & Afford & Afford & SE (Pct) \\
\hline \multicolumn{6}{|l|}{CANTAFMEDS: Yes} \\
\hline Total & 16042 & 154637709 & 11891658 & 7.69 & 0.27 \\
\hline 1=Male & 7179 & 74914054 & 4603694 & 6.15 & 0.38 \\
\hline \(2=F e m a l e\) & 8863 & 79723655 & 7287964 & 9.14 & 0.37 \\
\hline
\end{tabular}
----------------------------------------------------------------------------------------
Data Source: NCHS National Health Interview Survey (2006)
```

Exhibit 8 indicates that females seem more likely to incur the event of inability to afford prescription medication.

## Exhibit 9. Univariate Estimates for CANTAFMEDS (By Age Group)

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Demographics on Can't Afford Meds, Past 12 Months
Whites Age 25+
by: Variable, Age Group.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Variable \\
Age Group
\end{tabular} & \[
\begin{aligned}
& \text { Sample } \\
& \text { Size }
\end{aligned}
\] & Weighted Size & \begin{tabular}{l}
Number Can't \\
Afford
\end{tabular} & Pct Can't Afford & SE (Pct) \\
\hline \multicolumn{6}{|l|}{CANTAFMEDS: Yes} \\
\hline Total & 16042 & 154637709 & 11891658 & 7.69 & 0.27 \\
\hline 25-44 & 6453 & 63653320 & 5900963 & 9.27 & 0.50 \\
\hline 45-64 & 5982 & 60695038 & 5068053 & 8.35 & 0.40 \\
\hline 65+ & 3607 & 30289351 & 922642 & 3.05 & 0.34 \\
\hline
\end{tabular}
```

Data Source: NCHS National Health Interview Survey (2006)

Exhibit 9 indicates that younger people seem more likely than older people to incur the event of inability to afford prescription medication.

## Exhibit 10. Univariate Estimates for CANTAFMEDS (By Education)

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Demographics on Can't Afford Meds, Past 12 Months
Whites Age 25+
by: Variable, EDUC_3.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable EDUC_3 & \begin{tabular}{l}
Sample \\
Size
\end{tabular} & Weighted Size & Number Can't Afford & Pct Can't Afford & SE (Pct) \\
\hline \multicolumn{6}{|l|}{CANTAFMEDS: Yes} \\
\hline Total & 16042 & 154637709 & 11891658 & 7.69 & 0.27 \\
\hline \(1=\) HS or Less & 7535 & 69761406 & 6581372 & 9.43 & 0.41 \\
\hline \(2=\) Some College & 2713 & 26321699 & 2700286 & 10.26 & 0.68 \\
\hline 3=College+ & 5794 & 58554604 & 2610000 & 4.46 & 0.30 \\
\hline
\end{tabular}
```

NCHS National Health Interview Survey (2006)

Exhibit 10 indicates that those with at least a college education seem less likely to incur the event of inability to afford prescription medication.

## Exhibit 11. Univariate Estimates for CANTAFMEDS (By Region)

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Demographics on Can't Afford Meds, Past 12 Months
Whites Age 25+
by: Variable, Region.
\begin{tabular}{clllll} 
Variable & Sample & Weighted & Number Can't & Pct Can't & \\
Region & Size & Size & Afford & Afford & SE (Pct)
\end{tabular}
\begin{tabular}{lrrrrr} 
CANTAFMEDS: Yes & & & & \\
Total & 16042 & 154637709 & 11891658 & 7.69 & 0.27 \\
1=N.E. & 2737 & 27697703 & 1521292 & 5.49 & 0.53 \\
2=Midwest & 3832 & 38708172 & 2927690 & 7.56 & 0.46 \\
3=South & 5693 & 55545143 & 4882977 & 8.79 & 0.51 \\
4=West & 3780 & 32686691 & 2559699 & 7.83 & 0.60
\end{tabular}
---------------------------------------------------------------------------------------------------------------------------
NCHS National Health Interview Survey (2006)
```

The results in Exhibit 11 suggest that there may be geographical variation in the likelihood of incurring the event. Adults residing in the Northeast seem less likely to incur the event.

## Exhibit 12. Univariate Estimates for CANTAFMEDS (By Marital Status)

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Demographics on Can't Afford Meds, Past 12 Months
Whites Age 25+
by: Variable, MARRY_3.
\begin{tabular}{clllll} 
Variable & Sample & Weighted & Number Can't & Pct Can't & \\
MARRY_3 & Size & Size & Afford & Afford & SE (Pct)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{CANTAFMEDS: Yes} \\
\hline Total & 16042 & 154637709 & 11891658 & 7.69 & 0.27 \\
\hline 1=Married & 8796 & 101508884 & 5919779 & 5.83 & 0.29 \\
\hline 2=Widowed & 1723 & 10938199 & 564207 & 5.16 & 0.66 \\
\hline 3=Unmarried & 5523 & 42190626 & 5407672 & 12.82 & 0.53 \\
\hline
\end{tabular}
```

```
Data Source: NCHS National Health Interview Survey (2006)
```

Exhibit 12 indicates that those who are married or widowed seem less likely to incur the event than those who are unmarried (never married, divorced, separated, or living as married).

We now proceed to compare pairwise differences among age groups, unadjusted for other covariates, using the DESCRIPT procedure. The main difference between the first and second DESCRIPT call (Exhibit 11) is the addition of the DIFFVAR statements:

```
DIFFVAR AGE25_3=(1 3) / NAME = "25-44 vs. 65+";
DIFFVAR AGE25 3=(2 3) / NAME = "45-64 vs. 65+";
DIFFVAR AGE25_3=(1 2) / NAME = "25-44 vs. 45-64";
```


## Exhibit 13. $\quad 2^{\text {nd }}$ DESCRIPT: Pairwise Differences Among Age Groups

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: Sample Adults in Logistic Regression Analysis
Effect of Age on Can't Afford Meds, Past 12 Months
Whites Age 25+
for: Variable = CANTAFMEDS: Yes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline CONTRAST & Sample
Size & DiffPct & SE & T: Diff=0 & P: Diff=0 \\
\hline 25-44 vs. 65+ & 10060 & 6.22 & 0.62 & 10.05 & 0.0000 \\
\hline 45-64 vs. 65+ & 9589 & 5.30 & 0.52 & 10.20 & 0.0000 \\
\hline 25-44 vs. 45-64 & 12435 & 0.92 & 0.64 & 1.44 & 0.1509 \\
\hline
\end{tabular}
Data Source: NCHS National Health Interview Survey (2006)
```

Exhibit 13 indicates that the oldest age group (65+) has a significantly reduced likelihood of incurring the event compared to the two younger age groups. There is no significant difference between the age groups less than 65 years old.

We now proceed to the logistic regression analysis. The SUDAAN design specification is the same as in the previous DESCRIPT program.

The MODEL statement of the RLOGIST program (Exhibit 14) identifies CANTAFMEDS as the dependent variable; it is coded as $1=$ incur event (can't afford) and $0=$ not incur event. The independent variables in the main-effects model are the same as in the previous DESCRIPT program. Since all of the independent variables are to be modeled as categorical, they all appear on the CLASS statement. The default Wald- $F$ test is used for all tests of hypotheses.

The SUBPOPX statement restricts the analysis to whites aged 25 years or more. The REFLEVEL statement defines the regression coefficient reference level for sex, region, and marital status to be the first level of each variable. Since age and education are not included on the REFLEVEL statement, the last level of each of these variables will be used as the reference level for estimating regression coefficients ( $3=65+$ for age; and $3=$ Unmarried for marital status). REFLEVEL is optional; the default reference cell for each categorical variable in the model is the last sorted level of each variable.

The EFFECTS statement tests the null hypothesis that the regression coefficients for the two youngest age groups, $1=25-44$ yrs and $2=45-64$ yrs, are equal to each other. All other comparisons of age regression coefficients are in the default regression coefficient output (Age=1 vs. 3, 2 vs. 3). The EXP option will exponentiate the same EFFECTS contrast among regression coefficients to provide the user-requested odds ratio for not being able to afford prescription drugs among 25-44 yr-olds vs. 45-64 yr-olds (the default odds ratios compare each age group to the oldest, which is the reference cell).

```
EFFECTS AGE25 3 = (1 -1 0) / EXP name="Age: 25-44 vs. 45-64";
```

The CONDMARG statement requests the conditional marginal proportion (model-adjusted risk) for each level of age. The log odds of incurring the event for a given level of age are calculated from the estimated linear model by specifying the value of the age variable as the level of interest and then specifying all other variables in the model (except age) to be the estimated percentage distribution in the population. Based on the obtained log odds, the probability of incurring the event (model-adjusted risk) is then calculated for a specific level of the age variable. The ADJRR option on the CONDMARG statement computes the model-adjusted risk ratio for each age group compared to the last (unless a different reference cell is specified on the CONDMARG statement).
The PREDMARG statement requests the predicted marginal proportion (another estimator of the modeladjusted risk) for each level of age. For a given level of the age variable, the estimated model is used to predict the probability of the event for each observation by assuming that each observation is in the given level of the age variable; the individual's covariate values (except for age) are used in the estimated model. Then, the weighted mean (using WTFA_SA) of the predicted probabilities yields the predicted marginal proportion. The ADJRR option on the PREDMARG statement computes the model-adjusted risk ratio for each age group compared to the last (unless a different reference cell is specified on the PREDMARG statement).

The COND_EFF and PRED_EFF statements perform pairwise comparisons (model-adjusted risk differences) among the three levels of age, based on the conditional marginal proportions and predicted marginal proportions, respectively.

We include multiple PRINT statements, all of which are optional. Multiple PRINT statements allow us to set up different default print environments (SETENV statements) for different PRINT groups. The PRINT statements are used in this example to request the PRINT groups of interest, in some cases to change default labels for those statistics, and to specify a variety of formats for those printed statistics. Without the PRINT statement, default statistics are produced from each PRINT group, with default formats.

The SETENV statements are optional. They set up default formats for printed statistics and further manipulate the printout to the needs of the user.

The RFORMAT statements associate the SAS formats with the variables used in the RLOGIST procedure. The RLABEL statement defines variable labels for use in the current procedure only. Without the RLABEL statement, SAS variable labels would be produced if already defined.

## Exhibit 14. SAS-Callable SUDAAN Code (RLOGIST)

```
PROC RLOGIST DATA=samadult DESIGN=WR FILETYPE=SAS;
    NEST STRAT P PSU P;
    WEIGHT WTFA__SA;
    SUBPOPX AGE_P>24 AND MRACRPI2=1 / NAME="WHITES AGED 25+";
    CLASS SEX AGE25_3 EDUC_3 REGION MARRY_3;
    REFLEVEL SEX=1 REGION=1 MARRY_3=1;
    MODEL CANTAFMEDS = SEX AGE25 \overline{3 EDUC_3 REGION MARRY 3;}
    EFFECTS AGE25_3 = (1 -1 0) /_exp name="AGE: 25-44 vs. 45-64";
    CONDMARG AGE25_3 / adjrr;
    PREDMARG AGE25_3 / adjrr;
    COND_EFF AGE25_3=(1 0 -1) / NAME = "25-44 vs. 65+";
    COND_EFF AGE25_3=(0 1 -1) / NAME = "45-64 vs. 65+";
    COND_EFF AGE25_3=(1 -1 0) / NAME = "25-44 vs. 45-64";
    PRED_EFF AGE25_3=(1 0 -1) / NAME = "25-44 vs. 65+";
    PRED_EFF AGE25 3=(0 1 -1) / NAME = "45-64 vs. 65+";
    PRED_EFF AGE25_3=(1 -1 0) / NAME = "25-44 vs. 45-64";
    setenv labwidth=17 colspce=1;
    print / betas=default betafmt=f7.4 sebetafmt=f8.4 lowbetafmt=f7.4 upbetafmt=f7.4
        t_betafmt=f6.2 p_betafmt=f7.4;
    setenv labwidth=23 colspce=4 decwidth=3;
    print / risk=default tests=default expentrst=default waldpfmt=f7.4
        dffmt=f7.0 loworfmt=f9.3 uporfmt=f9.3 low_cntrstfmt=f5.3
        up_cntrstfmt=f5.3;
    setenv colspce=1 labwidth=22 decwidth=4 colwidth=9;
    print condmrg="CONDMARG" predmrg="PREDMARG" /
cond_mrg=default cnmgcons=default pred_mrg=default prmgcons=default
            t_cndmrgfmt=f8.2 t_prdmrgfmt=f8.2 t_cmconfmt=f8.2 t_pmconfmt=f8.2;
    setenv labwidth=27 decwidth=3 colwidth=5 colspce=5;
    print cond_rr="Risk Ratio" pred_rr="Risk Ratio"
            / coñdrisk=default predris\overline{sk}=default;
    RLABEL age25_3="Age Group";
    RLABEL cantafmeds="Can't Afford Meds Past 12m";
    RFORMAT sex sex.;
    RFORMAT age25 3 age.;
    RFORMAT educ_\overline{3} educ.;
    RFORMAT region region.;
    RFORMAT marry_3 marry.;
    RTITLE "Modelling Can't Afford Rx Meds, Past 12 Months";
    RFOOTNOTE "Data Source: NCHS National Health Interview Survey (2006)";
```


## Exhibit 15. First Page of RLOGIST Output

```
                            S U D A A N
    Software for the Statistical Analysis of Correlated Data
Copyright Research Triangle Institute February }201
    Release 11.0.0
DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With
Replacement (WR) Design
    Sample Weight: WTFA SA
    Stratification Variābles(s): STRAT_P
    Primary Sampling Unit: PSU_P
Number of zero responses : 14737
Number of non-zero responses : 1305
Independence parameters have converged in 7 iterations
Number of observations read : 24275 Weighted count:220266693
Observations in subpopulation : 16469 Weighted count:158409519
Observations used in the analysis : 16042 Weighted count:154637709
Denominator degrees of freedom : 300
Maximum number of estimable parameters for the model is 11
File SAMADULT contains 600 Clusters
    5 9 6 ~ c l u s t e r s ~ w e r e ~ u s e d ~ t o ~ f i t ~ t h e ~ m o d e l ~
Maximum cluster size is }71\mathrm{ records
Minimum cluster size is 1 records
Sample and Population Counts for Response Variable CANTAFMEDS
Based on observations used in the analysis
0: Sample Count 14737 Population Count 142746051
1: Sample Count 1305 Population Count 11891658
R-Square for dependent variable CANTAFMEDS (Cox & Snell, 1989): 0.035912
-2 * Normalized Log-Likelihood with Intercepts Only : 8699.01
-2 * Normalized Log-Likelihood Full Model : 8112.31
Approximate Chi-Square (-2 * Log-L Ratio) : 586.69
Degrees of Freedom : 10
Note: The approximate Chi-Square is not adjusted for clustering.Refer to hypothesis test table
for adjusted test.
```

SUDAAN read in 24,275 observations from the data set (see Exhibit 15), and 16,469 of these adults are in the subpopulation defined as white, aged 25 years and older. Of these observations, 16,042 are in the logistic regression analysis and represent $154,637,709$ adults in the population. The 427 observations deleted from the logistic regression analysis ( $2.6 \%$ of the subpopulation observations) have a missing value for one or more of the variables on the MODEL statement. The assumption is made that these 427 observations are missing at random so that the results of the logistic regression analysis can be generalized to the population of white adults aged 25 and older in the civilian, noninstitutionalized household population.

Among the 16,042 observations in the analysis, the number who incurred the event (could not afford prescription drugs) was 1,$305 ; 14,737$ did not incur the event (see top of Exhibit 15).
Eleven parameters were estimated, and the logistic regression equation converged in seven iterations. From the total of 600 clusters (PSUs) in the data set, 596 clusters were used to fit the model, because 4 clusters did not contain any adults in the defined subpopulation. The minimum cluster size (number of
subpopulation adults in a cluster or PSU) was one, and the maximum cluster size was 71 (see middle of Exhibit 15).

The frequencies for CLASS variables used in the model are not presented here, but the reader can refer to the frequencies presented for DESCRIPT, earlier in this example.

## Exhibit 16. Regression Coefficient Estimates



The variance estimation method is identified as Taylor Series (WR). The default options are used to estimate the model parameters and compute variances. These default options are an independent working correlation matrix to describe the dependence of observations within a cluster, and Binder's (1983) method to estimate robust variances of parameter estimates.

The estimated regression coefficients are given above (Exhibit 16), with estimated standard errors. For each estimated regression coefficient, a $t$-test is used to test the null hypothesis that the population regression coefficient is equal to 0 , conditional on all other variables being in the model. All main effects are significant. The following groups of white adults have a higher odds of incurring the event: females compared to males; each group of younger adults compared to those aged 65 and older; less-educated adults compared to those with at least a college education; adults living in the South, West, and Midwest compared to those living in the Northeast; and unmarried adults compared to those who are married.

## Exhibit 17. ANOVA Table

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrast
-------------------------------------------------------------
```



```
\begin{tabular}{|c|c|c|c|}
\hline OVERALL MODEL & 11 & 395.232 & 0.0000 \\
\hline
\end{tabular}
MODEL MINUS INTERCEPT 10 41.543 0.0000
INTERCEPT
SEX 
AGE25 3 2 36.308 0.0000
EDUC_\overline{3}
REGION 3 5.284 0.0015
MARRY_3 1-4 vs. 45-64 
```



```
Data Source: NCHS National Health Interview Survey (2006)
```

In the ANOVA (analysis of variance) table above (Exhibit 17), the 11 degrees of freedom (df) Wald-F tests the null hypothesis that all regression coefficients are zero. This null hypothesis is equivalent to saying that the population log odds are 0 , or the odds are 1.0 , or the probability of incurring the event is 0.5 . The null hypothesis is rejected. The 10 df Wald- $F$ tests the null hypothesis that all regression coefficients except the intercept are equal to 0 , (i.e., none of the independent variables are related to the outcome variable). This null hypothesis is rejected as well.

The next 1 df Wald- $F$ value tests the null hypothesis that the regression coefficient for sex is equal to zero; this test is equivalent to the $t$-test of the previous table (the Wald- $F$ of 39.8 is the square of the $t$ statistic 6.31). The next four Wald- $F$ tests, all with more than 1 df , are for each remaining main effect, conditional on all other variables in the model. All five main effects are statistically significant.
The EFFECTS statement contrast labeled Age: 25-44 vs. 45-64 in Exhibit 17 indicates that white adults aged 25-44 years do not have significantly different odds of incurring the event than do white adults aged $45-64$ years. And we know from the regression coefficient table presented first that each of these groups has a significantly higher odds of incurring the event than $65+$ year-olds.

## Exhibit 18. Default Odds Ratios

| Variance Estimation Method: Taylor Series (WR) |  |  |  |
| :---: | :---: | :---: | :---: |
| SE Method: Robust (Binder, 1983) |  |  |  |
| Working Correlations: Independent |  |  |  |
| Link Function: Logit |  |  |  |
| Response variable CANTAFMEDS: Can't Afford Meds Past 12m |  |  |  |
| For Subpopulation: WHITES AGED 25+ |  |  |  |
| Modelling Can't Afford Rx Meds, Past 12 Months |  |  |  |
| by: Independent Variables and Effects. |  |  |  |
| Independent Variables |  |  |  |
|  |  |  |  |
| and Effects |  | Lower 95\% | Upper 95\% |
|  | Odds Ratio | Limit OR | Limit OR |
| Intercept | 0.006 | 0.004 | 0.009 |
| Sex |  |  |  |
| 1=Male | 1.000 | 1.000 | 1.000 |
| 2=Female | 1.678 | 1.428 | 1.973 |
| Age Group |  |  |  |
| 25-44 | 3.503 | 2.593 | 4.731 |
| 45-64 | 3.245 | 2.447 | 4.303 |
| 65+ | 1.000 | 1.000 | 1.000 |
| EDUC_3 |  |  |  |
| $1=\bar{H} S$ or Less | 2.431 | 2.075 | 2.850 |
| $2=$ Some College | 2.425 | 1.983 | 2.965 |
| 3=College+ | 1.000 | 1.000 | 1.000 |
| Region |  |  |  |
| $1=\mathrm{N} . \mathrm{E}$. | 1.000 | 1.000 | 1.000 |
| $2=$ Midwest | 1.402 | 1.092 | 1.800 |
| 3=South | 1.644 | 1.284 | 2.106 |
| $4=$ West | 1.420 | 1.083 | 1.862 |
| MARRY_3 |  |  |  |
| 1=Married | 1.000 | 1.000 | 1.000 |
| 2=Widowed | 1.381 | 0.992 | 1.923 |
| 3=Unmarried | 2.237 | 1.948 | 2.569 |

```
Data Source: NCHS National Health Interview Survey (2006)
```

Exhibit 18 indicates that the $95 \%$ confidence intervals on the odds ratio exclude 1.0 for sex (females have higher odds); for age (both younger age groups have higher odds than those aged 65 years and older); education (both lower levels of education have higher odds than those with at least a college degree); marital status (unmarried adults have higher odds than those married); and region (all regions have higher odds than the Northeast).
Since the event occurs with a low probability, estimated as .0769 (or $7.69 \%$ ) by the earlier DESCRIPT output (Exhibit 8), the odds ratio could be considered to be an estimate of the prevalence ratio. The "prevalence" is the proportion of white adults who reported that they could not afford prescription medicine they needed at least once in the past 12 months.

## Exhibit 19. User-Specified Odds Ratios (EXP Option on EFFECTS)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrast.
\begin{tabular}{|c|c|c|c|}
\hline Contrast & EXP(Contrast) & \[
\begin{aligned}
& \text { Lower } \\
& 95 \% \\
& \text { Limit }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Upper } \\
& 95 \% \\
& \text { Limit }
\end{aligned}
\] \\
\hline AGE: 25-44 vs. 45-64 & 1.079 & 0.921 & 1.265 \\
\hline
\end{tabular}
```

The above contrast labelled Age: 25-44 vs. 45-64 (see Exhibit 19) is produced by the EXP option on the EFFECTS statement, and it contains the estimated exponentiated contrast among the regression coefficients. In this example, it yields the estimated odds ratio for not being able to afford prescription medicine for those aged 25-44 yrs vs. those aged 45-64 yrs. With an estimate of 1.079 and the confidence interval containing the null value of 1.0 , the odds are not significantly different in the younger vs. middleaged group (increased odds of only $7.9 \%$ ). The default odds ratios did not yield this estimate, because the oldest age group was used as the reference cell for fitting age in the model, and therefore, each age group was compared to the oldest.

## Exhibit 20. Predicted Marginals for Age Group (Model-Adjusted Risks)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Predicted Marginal #1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Predicted \\
Marginal \#1
\end{tabular} & PREDMARG & SE & Lower 95\% Limit & Upper 95\% Limit & T:Marg=0 & P-value \\
\hline \multicolumn{7}{|l|}{Age Group} \\
\hline 25-44 & 0.0923 & 0.0052 & 0.0826 & 0.1030 & 17.76 & 0.0000 \\
\hline 45-64 & 0.0863 & 0.0041 & 0.0785 & 0.0947 & 20.91 & 0.0000 \\
\hline 65+ & 0.0289 & 0.0036 & 0.0227 & 0.0368 & 8.11 & 0.0000 \\
\hline
\end{tabular}
Data Source: NCHS National Health Interview Survey (2006)
```

The predicted marginal proportion (or model-adjusted risk) for each level of age is given above (Exhibit 20), with its estimated standard error and $95 \%$ confidence limits. The $t$-test tests the null hypothesis that the corresponding population marginal is equal to 0 , a test not of interest in this example. Controlling on all other variables in the model (sex, education, marital status, and region), the probability of incurring the event (being unable to afford prescription drugs at least one time during the past 12 months) remains
fairly constant across the 25-44 and 45-64 age groups ( $95 \%$ confidence limits range from $8 \%$ to $10 \%$ ), then decreases significantly for white adults aged $65+$ ( $95 \%$ confidence limits range from $2 \%$ to $4 \%$ ).

## Exhibit 21. Conditional Marginals for Age Group (Model-Adjusted Risks)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Conditional Marginal #1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Conditional \\
Marginal \#1
\end{tabular} & CONDMARG & SE & \begin{tabular}{l}
Lower 95\% \\
Limit
\end{tabular} & \[
\begin{aligned}
& \text { Upper 95\% } \\
& \text { Limit }
\end{aligned}
\] & T: Marg=0 & P-value \\
\hline \multicolumn{7}{|l|}{Age Group} \\
\hline 25-44 & 0.0793 & 0.0049 & 0.0702 & 0.0895 & 16.24 & 0.0000 \\
\hline 45-64 & 0.0739 & 0.0040 & 0.0665 & 0.0821 & 18.66 & 0.0000 \\
\hline 65+ & 0.0240 & 0.0031 & 0.0186 & 0.0310 & 7.69 & 0.0000 \\
\hline
\end{tabular}
Data Source: NCHS National Health Interview Survey (2006)
```

The conditional marginal (another way of estimating the model-adjusted risk) for each level of age is given above (Exhibit 21). Controlling on all other variables in the model (sex, education, marital status, and region), the probability of incurring the event (being unable to afford prescription drugs at least one time during the past 12 months) remains fairly constant across the 25-44 and 45-64 age groups ( $95 \%$ confidence limits range from $7 \%$ to $9 \%$ ), then decreases significantly for white adults aged 65+ ( $95 \%$ confidence limits range from $2 \%$ to $3 \%$ ).

The table below compares the unadjusted proportions (DESCRIPT procedure), the predicted marginal proportions, and the conditional marginal proportions (both of which are model-adjusted risks produced by RLOGIST).

Exhibit 22. Proportion (and Standard Error) of White Adults Not Able to Afford Prescription Medication, by Age Group, 2006 NHIS

| Age Group | Unadjusted Proportion | Predicted Marginal | Conditional Marginal |
| :---: | :---: | :---: | :---: |
| $25-44$ | $.0927(.0050)$ | $.0923(.0052)$ | $.0793(.0049)$ |
| $45-64$ | $.0835(.0040)$ | $.0863(.0041)$ | $.0739(.0040)$ |
| $65+$ | $.0305(.0034)$ | $.0289(.0036)$ | $.0240(.0031)$ |

Note that the predicted and conditional marginals are not equal to each other. Equality will be observed for linear regression, but equality does not hold here because logistic regression is a nonlinear model. The predicted marginals are close to the unadjusted proportions, and the conditional marginals are somewhat less than the unadjusted proportions. Whether predicted or conditional marginals are used, there are still striking differences among the three age groups on the proportion who incur the event.

## Exhibit 23. Model-Adjusted Risk Ratios Derived From Predicted Marginals

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Predicted Marginal Risk Ratio #1.
-----------------------------------------------------------------
Predicted Marginal Risk
\begin{tabular}{lllll} 
Ratio \#1 & & Lower & Upper \\
& Risk & & \(95 \%\) & \(95 \%\) \\
& Ratio & SE & Limit & Limit
\end{tabular}
Limitholmit
Age Group
    25-44 vs. 65+ 3.190 0.458 2.404 4.232
    45-64 vs. 65+ 2.982 0.405 2.283
Data Source: NCHS National Health Interview Survey (2006)
```


## Exhibit 24. Model-Adjusted Risk Ratios Derived From Conditional Marginals

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Conditional Marginal Risk Ratio #1.
Conditional Marginal Risk
\begin{tabular}{lllll} 
Ratio \#1 & & Lower & Upper \\
& Risk & & \(95 \%\) & \(95 \%\) \\
& Ratio & SE & Limit & Limit
\end{tabular}
Age Group
    25-44 vs. 65+ 3.304 0.487 2.472 4.415
    45-64 vs. 65+ 3.079 0.428 2.342 4.047
Data Source: NCHS National Health Interview Survey (2006)
```

The above tables show estimation of prevalence ratios (also referred to here as risk ratios) by age group, using those aged 65 years and older as the reference group. The ratio of the predicted marginals and the ratio of the conditional marginals yield similar results, and the adjusted odds ratio, based on the logistic regression analysis presented earlier, yields a slightly higher, but fairly comparable estimate.

The following table summarizes the three types of ratio estimates:

Exhibit 25. Estimated Prevalence Ratio, by Three Techniques, White Adults, 1997 NHIS

| Age Group <br> Comparison | Adjusted <br> Odds Ratio | Ratio of Predicted Marginals | Ratio of Conditional Marginals |
| :---: | :---: | :---: | :---: |
|  | 3.5 | 3.2 | 3.3 |
|  | 3.2 | 3.0 | 3.1 |
| $45-64$ vs $65+$ |  | Model-Adjusted Prevalence Ratios |  |

The next section of output (six exhibits displayed in Exhibit 26 to Exhibit 31) is generated by the PRED_EFF and COND_EFF statements, and they compute the model-adjusted risk differences corresponding to all pairwise comparisons of the three age groups, with risks first derived from predicted marginal proportions, and then for risks derived from conditional marginal proportions.

## Exhibit 26. Model-Adjusted Risk Differences Derived from Predicted Marginals (Age: 25-44 vs. 65+)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Predicted Marginal #1.
------------------------------------------------------------------------------
Contrasted Predicted
    Marginal #1 PREDMARG
25-44 vs. 65+ 0.0634 0.0068 0.0000
Data Source: NCHS National Health Interview Survey (2006)
```


## Exhibit 27. Model-Adjusted Risk Differences Derived from Predicted Marginals (Age: 45-64 vs. 65+)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Predicted Marginal #2.
Contrasted Predicted
    Marginal #2 PREDMARG
\begin{tabular}{|c|c|c|c|c|}
\hline & Contrast & SE & T-Stat & P-value \\
\hline 45-64 vs. 65+ & 0.0573 & 0.0057 & 10.13 & 0.0000 \\
\hline
\end{tabular}
Data Source: NCHS National Health Interview Survey (2006)
```


## Exhibit 28. Model-Adjusted Risk Differences Derived from Predicted Marginals (Age: 25-44 vs. 45-64)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Predicted Marginal #3.
Contrasted Predicted
\begin{tabular}{|c|c|c|c|c|}
\hline Marginal \#3 & PREDMARG Contrast & SE & T-Stat & P-value \\
\hline 25-44 vs. 45-64 & 0.0060 & 0.0064 & 0.94 & 0.3469 \\
\hline
\end{tabular}
Data Source: NCHS National Health Interview Survey (2006)
```

The above three contrasts show that both the younger and middle-age groups differ from the $65+$ group significantly on the model-adjusted risk obtained via predicted marginal proportions. The younger and middle-age groups do not differ significantly from each other.

## Exhibit 29. Model-Adjusted Risk Differences Derived from Conditional Marginals (Age:

 25-44 vs. 65+)```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Conditional Marginal #1.
Contrasted Conditional
    Marginal #1 CONDMARG
    Contrast SE T-Stat P-value
25-44 vs.65+ 0.0553 0.0060 0.0000
Data Source: NCHS National Health Interview Survey (2006)
```

Exhibit 30. Model-Adjusted Risk Differences Derived from Conditional Marginals (Age: 45-64 vs. 65+)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Conditional Marginal #2.
Contrasted Conditional
    Marginal #2
                        CONDMARG
                            Contrast SE T-Stat P-value
45-64 vs.65+ 0.0499 0.0050 0.0000
Data Source: NCHS National Health Interview Survey (2006)
```


## Exhibit 31. Model-Adjusted Risk Differences Derived from Conditional Marginals (Age: 25-44 vs. 45-64)

```
Variance Estimation Method: Taylor Series (WR)
SE Method: Robust (Binder, 1983)
Working Correlations: Independent
Link Function: Logit
Response variable CANTAFMEDS: Can't Afford Meds Past 12m
For Subpopulation: WHITES AGED 25+
Modelling Can't Afford Rx Meds, Past 12 Months
by: Contrasted Conditional Marginal #3.
Contrasted Conditional
    Marginal #3
        CONDMARG
        Contrast SE T-Stat P-value
25-44 vs. 45-64 0.0054 0.0057 0.94 0.3471
Data Source: NCHS National Health Interview Survey (2006)
```

The above three contrasts show that both of the younger age groups differ from the 65+ group significantly on the model-adjusted risk obtained via conditional marginal proportions. The two younger age groups do not differ significantly from each other.

In summary, women are about 68\% more likely than men to report not being able to afford needed prescription drugs at least once in the past year, adjusted for age, education, region, and marital status (using the odds ratio $=1.68$ ). In addition, younger and middle-aged persons are both more likely than older persons to report not being able to afford needed prescription drugs at least once in the past year, adjusted for sex, education, region, and marital status. In terms of both odds ratios and risk ratios, those aged 25-44 are more than three times as likely as those 65 and older, and those aged 45-64 are about three times as likely as those 65 and older.

